Please do not redistribute slides without prior
permission.

Getting Started with
Scripting in Python

Social:

Web:
16:00 - 16:50 Fri, October 27, 2023 Courses:

YouTube:
50 minutes | Introductory Audience

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

20
23 The abstract that you read and enticed

Abstract you to join me is here!

Blender 3D is a powerful tool for 3D modeling, animation,
rigging, texturing, drawing, vfx, and more -- but what
happens when a feature is not available in your
respective domain? Good news -- you can create it
yourself! In this talk, | will be showing beginners how they
can get started creating their first add-on to the Blender
3D ecosystem using Python. This talk will show you how
to get started with the scripting interface for artists with
minimal programming experience, or programmers who
want to write tools that integrate into the Blender 3D
ecosystem. Folks will leave this presentation
understanding how to write, package, and find more
information to develop awesome scripts where they
need!

faces = myObject.data.polygons

Warning -- this talk may take you on a journey of spending even more time

using Blender 3D to create awesome creations.

Rated ‘E’ For Everyone!

E (Yup, let’s continue to make Blender3D fun
for everyone involved)

Here is what we are creating!

(So you know if you should stick around or hop into another session)

Result of Today’s Presentation

e Creating a Bounding Box programmatically in Python

Code for the talk

e |ocated here:
https://qithub.com/MikeShah/Talks/tree/main/2023/2023 BlenderCon

O MikeShah |/ Talks

Code Issues Pull requests Actions

Talks / 2023 / 2023 _BlenderCon

https://github.com/MikeShah/Talks/tree/main/2023/2023_BlenderCon

Your Tour Guide for Today

by Mike Shah

e Associate Teaching Professor at Northeastern University

in Boston, Massachusetts.

o | love teaching: courses in computer systems, computer graphics,
geometry, and game engine development.

o My research is divided into computer graphics (geometry) and
software engineering (software analysis and visualization tools).

e | do consulting and technical training on modern C++,
DLang, Concurrency, OpenGL, and Vulkan projects

<\ lj\‘\ \
www.mshah.io

Vi

o Usually graphics or games related -- e.g. Building 3D application YouTube
plugins https://www.youtube.com/c/MikeShah
e Outside of work: guitar, running/weights, traveling and Non-Academic Courses

courses.mshah.io

cooking are fun to talk about

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io

Programming Blender 3D

Add = Object

V Mesh »| [] Plane

D Curve Cube
. . . & Surface QO circle
Origin of this Talk L e
& Volume B Cylinder
£ Grease Pencil @) Céne
. . K Armature ©fioris
e The idea of this talk was born out of a 2 Latice
computational geometry course that | B
teach

o Within that course we implement several
geometry algorithms in C++ and the SDL2
library in two-dimensions

e In order to start implementing in 3D
however, | could not assume students

knew OpenGL/Vulkan/Metal/D3D
o So what better tool than Blender 3D which
had many mesh operations and an easy
scripting interface to access them.
o Teaching students a concrete skill (i.e.
Blender 3D) is also a win for me!

10

Brainstorming (1/2) ; |

=
=l > Relations

> Collections

> Instancing

So | thought of several ideas of . 4

how to get students started: 7 -
@) Computlng Normals Textu:;eeZpace
o Bisection = :
o Convex Hull cooor ([-

Display As Textured v e

o Bounding Boxes = - Bounds @ Capsule m
| settled on bounding boxes, as it
touches on enough interesting
ideas for programming in Blender
3D

o The rest remained candidates for
incorporating into a final project!
o (And homework for you now!)

So let’s get started!

o Bounding Boxes

12

Writing Python Scripts in Blender 3C

Install Blender 3D

e [I'll assume you have installed Blender 3D
o Il write scripts using Blender 3.6.5, but these

scripts should largely be compatible with most Adblender

every version of Blender 3.x.x : :

m Nothing too fancy going on today

e The last assumption I'll make is that you

have used Blender 3D at least a little bit

o Minimum Requirements: You can navigate with
the mouse, extrude some faces on a cube, and
have spent a few hours in the program

o But that's about it! That's great news if you're a https://www.blender.org/download/
programmer building plugins to support a
project, and great news if you're already an
expert artist!

14

https://www.blender.org/download/

o~

Texture Paint Shading Animation Rendering Compositing Geometry Nodes Scripting

Scripting Layout (1/5)

e \We are primarily going to be
working from the Scripting

Workspace
o Here’s what the scripting layout
looks like

15

Texture Paint Shading Animation Rendering

Scripting Layout (2/5)

Compositing

Geometry Nodes

Scripting

Script Workspace
o For scripting!
Python Console
o Useful for typing in
commands, querying
information, and getting fast
feedback
Info Log

o Tells you the results of
operations occurring in the
viewport (e.g. moving around)

Text Editor

o Used for executing larger
scripts

16

Texture Paint

Shading Animation = Rendering

e Python Console

(@)

'
v View Select Add

|, User Perspective
(1) Collection | Cube

Useful for typing in
commands, querying
information, and getting fast
feedback

v bpy.ops.object.editmode_toggle()
v bpy.ops.object .editmode_toggle()
« bpy.ops.sculpt.sculptmode_toggle()
¥ bpy.ops.sculpt.sculptmode toggle()

Compositing Geometry Nodes Scripting

PYTHON INTERACTIVE CONSOLE 3.10.13 (main, Oct
6 2023, 17:59:10) [Clang 14.0.3 (clang-1403.0.2
2.14.1)]

Builtin Modules: bpy, bpy.data, bpy.ops,

bpy.props, bpy.types, bpy.context, bpy.utils, b

gl, gpu, blf, mathutils

Convenience Imports: from mathutils import
from math import

Convenience Variables: C = bpy.context, D = bpy
.data

("hello Blender Con!")

59:10) [Clang 14.0.3 (clang-1463.6.22.14.1)]
ypes, bpy.context, bpy.utils, bgl, gpu, blf, mathuti & 2 Velumetrics
> Performance
> Curves

> Shadows.

§) Sselect (9 Rotate View (8 Object Context Menu

17

Texture Paint Shading Animation Rendering Compositillg user Perspective

(1) Cube

Edit Render Window Help Layout Modeling Sculpting UV Editing Textt|
ject Mode v View Select Add Object 14 Global Ev View Console
Options v
e v View Console

(1) Collection | Cube
N

>>>

v bpy.ops.object.editmode toggle()

] View Console . v bpy.ops.transform.translate(value=(0, 3.00
008, 0), orient type='GLOBAL', orient matr
ey By 0)) s (@ 1k, @), (@, @, 1), @FlE
nt matrix_ type='GLOBAL', constraint axis=(
False, True, False), mirror=True, use prop

ortional edit=False, proportional edit fal

‘ I nfo Lo PYTHON INTERACTIVE CONSOLE 3.10.13 (main, Oct 6 2023, 17:59:1 _ — 5 _ . . _'7 —
6) [Clang 14.0.3 (clang-1463.6.22.14.1)] loff='SMOOTH , propo EE lonalislze_l , use p P

Builtin Modules: bpy, bpy.data, bpy.ops, bpy.props, bpy. . :
types, bpy.context, bpy.utils, bol, gpu, bLF, mathutil opo rtional connected=False, use proportion

Convenience Imports: from mathutils import *; /

o) Tells you the results of B G al projected=False, snap=False, snap eleme
. . . nts={'INCREMENT'}, use snap project=False,
operations occurring in the T BRRR snop target='CLOSEST', use snap self=True
viewport (e g moving arou nd) T ———— St T , use_snap_edit=True, use_snap_nonedit=Tru

¥ bpy.ops.sculpt.sculptmode_toggle()] e usefsnapfselectablezFal se)

£ select (3 Rotate View (8 Object ¢

18

lB§ v View Text Edit Select Format Templates

bpy
time
start time = time.time

print("“Starting Script"
myObject = bpy.context.active object

print(myObject.name

e Text Editor

o Used for executing larger
scripts

i/ v script.py

PYTHON INTERACTIVE CONSOLE 3.10.13 (main, Oct 6 2023, 17:59:1
) [Clang 14.0.3 (clang-1403.0.22.14.1)]

Builtin Modules: bpy, bpy.data, bpy.ops, bpy.props, bpy.
types, bpy.context, bpy.utils, bgl, gpu, blf, mathutils
Convenience Inpor from mathutils import *; from math impo
Convenience Variables: C = bpy.context, D = bpy.data

v bpy.ops.object.editmode_toggle()

v bpy.ops.object .editmode_toggle()

« bpy.ops.sculpt.sculptmode_toggle()

¥ bpy.ops.sculpt.sculptmode toggle()

§) select (¥ Rotate View

g Geometry Nodes

Blender

‘ePaint Shading Animation Rendering Compositing Geometry Nodes | 4 Scene

‘The active workspace view layer showing in the window.

PYTHON INTERACTIVE CONSOLE 3.10.13 (main, Oct 6 2023, 17:59:10) [Clang 14.0.3 (clang-1403.6.22.14.1)]
Builtin Modules: bpy, bpy.data, bpy.ops, bpy.props, bpy.types, bpy.context, bpy.utils, bgl, gpu, blf, mathuti
s

Convenience Inports: from mathutils import *; from math import *
Convenience Variables: C = bpy.context, D = bpy.data

(8 Object Context Menu

Scripting

2B

% @+ viewLayer ©

v

= scene Collecton

v [& Collection on
» % camera °onQa
s @owe 7 o
» ® gt © ona

t=vj(@~] (2 [}

v Current File

@& BAR =

(o}

> Brushes 7%,
Cameras 2
Collections (W) @ 2. &
Images a7
tights @
Line Styles -/
yel
45 scene
Render Engine Eevee.
 sampling
Render
Viewport 16
 Viewport Den...
> Ambient Occlusion
> Bloom
> Depth of Field
> Subsurface Scattering
> | Screen Space Reflections.
> | Motion Blur
> Volumetrics
> Performance
> Curves,

> Shadows.

(Aside) If you cannot find the Scripting Workspace

@ Blender Window

e Scripting Workspace is usually the last tab. X
o Just scroll over the menu bar and scroll your mouse R LCIEE N L AR VT S VR
wheel 19, "W Object Mode « New Window
o Or otherwise use ‘page down’ =l b1-T j:glMWV::FWH
e If you're on a Mac laptop with a small screen, L5 s —————
you can navigate to the next workspace . ST

o Mac users without a page down button: Show Status Bar

m Cmd + fn + down
e Another option is to scale down your display a
bit

o Edit -> Preferences -> Adjust Resolution Scale

Save Screenshot

Save Screenshot (Editor)

Blender Preferences

Resolution Scale

Line Width Default

Your First
Blender 3D Python Script

Your First Script (1/2)

e From the Python Console
you can type in your first

command:
o print(“some_string”)
I IS o]Vl (e RelV11oIVI R ()R (ORI 1\ THON INTERACTIVE CONSOLE 3.10.12 (main, Aug 14 2023,

the console 01) [GCC 11.2.1 20220127 (Red Hat 11.2.1-9)]
® Wonderful o Congratulatlons Builtin Modules: bpy, bpy.data, bpy.ops, bpy.props, bpy
. i~ .types, bpy.context, bpy.utils, bgl, gpu, blf, mathutils
on your fII"St SCrlpt. Convenience Imports: from mathutils import *; from math imp

ort *
Convenience Variables: C = bpy.context, D = bpy.data

I

22

e We'll talk a little bit about some
of these important Builtin
Modules throughout this talk. 7 CONSOLE 3.10.12 (mai

o Inside Blender, the python console, [ERSEEEcIsSEN S e rrloh Py G I EYs
automatically loads these for us

o Later on, in our scripts, we will
manually import these modules.

e The other thing to note is that we | -
are using Python 3.10.13 _ —

o Your version may differ, but you'll >>> print(“Hello Blender Con 2023")
want a relatively recent version of i enager Con Z0.
Python I

m i.e. Python 3.10.XX or greater
is ideal moving forward

23

(Aside) Python Cheat Sheet

e [|'ll assume you have some

amount of Python
o Here’s a brief cheat sheet on
the right

e If you're pretty comfortable
with:
o lists, dictionaries, iteration,
and classes you’re all ready!

(" u ordered sequences, fast index access, repeatable values Container TVS

list [1,5,9] ["x",11,8.9] ["mot"] []
/,tuple (1,5,9) 11,"y",7.4 ("mot",) @
Non modifiable values (immutables) ¥ expression with only comas —»tuple

~ str bytes (ordered sequences of chars / bytes)

= key containers, no a priori order, fast key access, each key is unique =
dictionary dict {"key":"value"} dict (a=3,b=4,k="v") {;}
(key/value associations) {1:"one",3:"three",2:"two",3.14:"n"} ;
collection set {"keyl", "key2"} {1,9,3,0)} set (_)
L ¥ keys=hashable values (base types, immutables...) frozenset immutable set empty |

https://perso.limsi.fr/pointal/ media/python:cours:mementopython3-english.pdf

24

https://perso.limsi.fr/pointal/_media/python:cours:mementopython3-english.pdf

The Power of

at Your Fingertips! (1/2)

e At this point -- you have all of

Python available!

o The example to the right shows
importing ‘sys’ and ‘random’
libraries.

o The ‘sys.version’tells us what
version of Python we have (incase
you missed it)

m Generally speaking, we want
Python version 3+ for this
tutorial.

o For printing the random numbers, try
repeating the command a few times

[-]v View Console

PYTHON INTERACTIVE CONSOLE 3.10.12 (main, Aug 14 2023, 22:14:
01) [GCC 11.2.1 20220127 (Red Hat 11.2.1-9)]

Builtin Modules: /, bpy.data, bpy.ops, bpy.props, bpy
1y ils, bgl, gpu, blf, mathutils
Convenience Imports: from mathutils import *; from math imp
(o] o

Convenience Variables: C = bpy.context, D = bpy.data
>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

e (Still capture of the code) [E]lv View Console

o0

>>>

>>> import sys

>>> print("Python",sys.version)
: L 10 12 ‘ ' 14 20

import random
print(random. randint(

\LE ger 1n "'l'l_['

: -print(random.randint(O,S))

print(random.randint(0,5))

print(random.randint(©,5))

[

(Aside) Console Productivity Tip(s)

e To save yourself time, and re-execute

app
a command, press the ‘up’ and ‘down’ context
arrow keys to cycle between your datz
command history 2;2 -
o Pressing ‘enter’ again will execute the path
command again (try with the random props
numbers) types
e Use ‘tab’ to autocomplete text that you utils
: >>> bpy.app.
start typing. Slamhie
o This is a big time saver for typing out autoexec fail
functions, variable names, etc. autoexecﬁfailwmesgage
m As alearner, this is also useful for autoexec fail quiet
exploring which commands are background
available. binary path

build branch

Another Script -- Script for Timing

Again, demonstrating usage of
Python

(@)

(@)

It's nice feedback to the user
I've found if you have a timer for
when the operation starts ,and
some sort of reporting when the
operation is finished
m From a development
standpoint -- it’s useful for
performance, and otherwise
knowing when your
operation is done as well
But -- it's not just Python that we
have access to

import time
start_timer = time.time()
print(“elapsed”, time.time() - start_timer)

28

The Power of at Your Fingertips! (1/2)

#2v 'm ObjectMode v View Select Add Object

e \What's also very neat about Blender3D is .
learning some of the commands ‘as you e

normally use blender’

o Take a moment to modify the geometry of the cube
o As you modify the geometry, you'll observe the
info log is updated!

[WOW == Observe that We Can See the Script i Eﬁ\i’i,j‘”’s” 3.10.12 (main, Aug 22:14:61) [GCC 11.2.1 20220127
actions as they take place! e

. Try copying and pasting the
previous ‘extrude’ command from the
info log, into the python console which
repeats the extrude of the selected face.

User Perspective
(1) Cube

[-]v View Console

se, "MLrror":ralse}, IKANSFUKM UI_Translate={“value-:(y 1.42895), "Orient_Type”: NUKMAL', "Orlent_matrix-

1, 0), (-1, e, 0), (6, 0, 1)), "orient_matrix type" "constraint_axis":(False, False, True), "mirror

be, "use proportional edit":False, "proportional edit falloff":'SMOOTH', "proportional size":1, "use proportional c
pnnected" :False, "use proportional projected":False, "snap":False, "snap_elements":{'INCREMENT'}, "use snap_project
:False, "snap_target":'CLOSEST', "use_ snap_self":True, "use_snap_edit":True, "use_snap_nonedit":True, "use_ snap_se
ectable":False, "sna| 3 3 , "shap_normal": (@, 0, 0), "gpencil strokes":False, "cur
or_transform":Fals: _space":False, "remove on_cancel":False, "view2d edge pan":False, "release confirm":F
hlse, "use accurate":False, "use automerge and split":False}

RF HED " }

bpy.ops.object.editmode toggle()
bpy.ops.mesh.select_mode(use extend=False, use expand=False, type='EDGE')
bpy.ops.mesh.select_mode(use extend=False, use_expand=False, type='FACE')

bpy.ops.mesh.extrude_region_move(MESH_OT extrude region={"use _normal_flip":False, "use d
issolve ortho_edges":False, "mirror":False}, TRANSFORM OT_ translate={"value":(0, 0, 1.42
895), "orient type":'NORMAL', "orient matrix":((e, 1, 0), (-1, 0, ©), (6, @, 1)), "orien
t_matrix_typ ORMAL ' constraint_axis":(False, False, True), "mirror":False, "use pr
oportional edit":False, "proportional edit falloff":'SMOOTH', "proportional size":1, "us
e_proportional_connected":False, "use proportional projected":False, "snap":False, "snap
_elements":{'INCREMENT'}, "use_snap_project":False, "snap_target":'CLOSEST', "use_snap_s
elf":True, "use snap_edit":True, "use_snap_nonedit":True, "use_ snap_selectable":False, "
snap_point": (0, 0, 0), "snap_align":False, "snap_normal":(0, 0, 0), "gpencil strokes":Fa
lse, "cursor transform":False, "texture_space":False, "remove on_cancel":False, "view2d
edge pan":False, "release confirm":False, "use accurate":False, "use automerge and_split
":False})

Getting Help on Your Journey (1/2)

>>> help(bpy)

P help() Help on package bpy:
o From the Python Console you can type e e
‘help’ on any module, function, class, or e T T
even a variable. ggih
o : Try help(bpy), help(bpy.data) UELLs Hpackage}
m (Remember, these modules have SUBMS?SEES
been imported for us already) types

m You can use ‘help’ on any module to
start exploring some of the ‘classes’
and ‘functions’ available.

® type(---) >>> myObject = bpy.context.active object
o This is useful for querying the type of >>> type(myObject)
something that has already been created. EEECEEERSSARSTsER (et

>>>

The Python API
Documentation online is a

great resource

o Note: | recommend downloading
a copy to be used offline for faster

browsing

m (Also useful for long
airplane rides :))

Blender 3.6.5 Python API

Search docs

Context Access (bpy.context)
Data Access (bpy.data)
Message Bus (bpy.msgbus)
Operators (bpy.ops)

Types (bpy.types)

Utilities (bpy.utils)

Path Utilities (bpy.path)
Application Data (bpy.app)
Property Definitions (bpy.props)

/ Blender 3.6 Python APl Documentation

Blender 3.6 Python API Documentation

Welcome to the Python APl documentation for Blender, the free and open source 3D creation suite.

This site can be used offline: Download the full documentation (zipped HTML files)

Documentation

e Quickstart: New to Blender or scripting and want to get your feet wet?

* API Overview: A more complete explanation of Python integration.

* API Reference Usage: Examples of how to use the API reference docs.

e Best Practice: Conventions to follow for writing good scripts.

e Tips and Tricks: Hints to help you while writing scripts for Blender.

e Gotchas: Some of the problems you may encounter when writing scripts.
* Advanced: Topics which may not be required for typical usage.

e Change Log: List of changes since last Blender release

https://docs.blender.org/api/current/index.html

32

https://docs.blender.org/api/current/index.html

Enabling ‘Python Tooltips’ for Developers

e Another very useful way to
explore the Python APl is to

enable ‘Python Tooltips’ Blender Preferences

(@)

This is done in the ‘preferences’
modal. Resolution Scale 0.95

Enabling ‘Python Tooltips’ will show Line Width ~ Default

iti ' ' Splash S
you additional information about kA
various tools you are use to clicking

Developer Extras

Tooltips & User Tooltips

on -- and guide you to the python [Python Toolips |
API.

m (See example in the top-right)

outpu "
Output Properties
N
&

33

Using the Internal Text Editor

Blender 3D Internal Text Editor

At some point we likely will
want to be able to create
larger scripts that execute a
series of commands to
perform some work.

(@)

For this presentation we’ll write
our scripts in the Text Editor

Note: You can use your favorite &

Text Editor (VIM, VSCode, etc.)
to also write your scripts.

9+ W ObjectMode v View Select Add Object

TNl B -1

User Perspective

(1) Collection | Cube

[-]v View Console

>>> type(myObject)
<clas

s 'bpy._type:

.context.active object

Object's

Options v

O

I, G @+ View Text Edit Select Format Templates & v script.py

Add our scripts here
so we can load files which
contain a series of commands

35

Applications

Tip: Launch Blender from Terminal

Name

#® App Store
e |n order to help us debug and ‘print’ out text, it is B Autc open

> i Blac gpow Package Contents

most useful to launch Blender from the terminal. 2 Bler

. . @ Boo Move to Trash
o Then when we execute our scripts we will get text output on 0

the terminal where we launched. Caldl L ®
Rename
o OnMac RGlie : :
. .) , . @ citri Compress “Blender
m You will then use ‘Option + P’ to run your script ¥ MBlnicate
o On Linux M vacinto Make Alias
m You will use ‘alt+p’ Quick Look

Copy
| Share

2000000
Tags...

mike@Michaels—-MacBook—Air MacOS % pwd
/Applications/Blender.app/Contents/MacOS
mike@Michaels—MacBook—-Air MacOS % ./Blender |"Newieminalstrolder

New Terminal Tab at Folder

Quick Actions

Solving the Bounding Box Problem with
Python Scripting

Gathering our Tools from the Python API

Creating a Bounding Box Programmatically

e So as was shown at the start
of the talk, let’s begin our
journey creating a bounding

box
o Now this is something that
Blender3D already has the
capability to do
o However, learning how to do so
from scratch will expose us to
Blender’s API through Python.

38

Creating a Bounding Box Programmatically -- built-in

) NOW Of Course you Could Ca”- XD File Edit Render Window Help o &5~ Scene (@ viewLayer

2. W ObjectMode v View Select Add Object 18 t=

(@) . ShOW . bOundS = T rue [B f'm Options v = S;ene Collection

v || Collection

o That’s not really in the spirit of this User Ferspeciive » @B suzenne

(10) Collection | Suzanne . [
assignment... , =@y [o

» Collections

e However, this does introduce <

¢ 3 » Lights
the ‘bpy.context Elv View consoe - Lo sy
" Irue, "use_snap_selectable":talse, "snap_point":(v, ©, © g2D0ee
), "snap_align":False, "snap _normal":(®, ©, 0), "gpencil o /o bounds
d I strokes":False, "cursor transform":False, "texture spac L2
mo u e e":False, "remove on _cancel":False, "view2d edge pan":Fa

lse, "release_confirm":False, "use accurate":False, "use
automerge and split":False})

which is of use itk

e snap nonedit=True, use snap selectable=F
alse)

== bpy.context.space data.search filter = ""

bpy.context.space data.context = 'VIEW LAY :
ER' Display As Textured v

—e- = i = = S EE Display Bounds
bpy.context.space data.search filter = "bo Display the object's bounds.

unds"

= bpy.context.object.show bounds = False

: How do you compute the bounding box? (1/2)

e Now if you had to compute the bounding box

from scratch -- how would you do it?
o (If you're watching this in the future you can pause
the video and write out a solution)
o For my current audience, I'm going to forward us to
one solution -- there’s a couple ways to approach this

40

Simplest solution

o Iterate through all of the vertices
m Keep track of both the minimum and maximum
X,y,z values

Another solution for obtaining the bounds is to

otherwise use;:

o myObject.bound_box
o This returns the ‘8’ vertices of the bounding box

(Aside: This is an axis-aligned bounding box,
but we can apply a transform to get an
oriented-bounding box)

>>> myObject.bound_box
bpy.data.objects['Suzanne'].bound box
>>> print(myObject.bound box)

<bpy float[8], Object.bound box>

>>> print(myObject.bound box[0])
bpy float[3], Object.bound box

>>> print("x of first corner:",myObject.bound box[0][0])
of first corner: -1.3671875

41

A few Blender Python (bpy) modules of Importance (1/2)

Blender 3.6.5 Python API
o bpy
o This is the main module of the programming interface in Blender.
e bpy.context
o This module captures the current state of the user interaction Search docs

m (e.g. selection or current mode)
o Note: This is often aliased as ‘C’ for ‘bpy.context’

e bpy.data
o This is the storage of blender objects
m Anything found within bpy.data.objects is something that
can be displayed in the Blender 3D viewport
e (e.g. camera, lights, curves, meshes, etc.)
o Note: This is often aliased to ‘D’ for ‘bpy.data’

Context Access (bpy.context)
Data Access (bpy.data)
Message Bus (bpy.msgbus)

Operators (bpy.ops)

Types (bpy.types)

Utilities (bpy.utils)
Path Utilities (bpy.path)
o bpyOpS Application Data (bpy.app)
o Functions that can be invoked in the interface Property Definitions (bpy.props)

e Both of these modules are going
to be important for us to work in

o One for selecting our object of

interest
o The second for getting data
e bpy.context

o This module captures the current state of the user interaction
m (e.g. selection or current mode)
o Note: This is often aliased as ‘C’ for ‘bpy.context’

e bpy.data
o This is the storage of blender objects
m Anything found within bpy.data.objects is something that
can be displayed in the Blender 3D viewport
e (e.g. camera, lights, curves, meshes, etc.)
o Note: This is often aliased to ‘D’ for ‘bpy.data’

43

Bounding Box

Implementation

44

bpy .context and selecting the current object

#2v W ObjectMode v View Select Add Object 1o Global v v D) v e

e So again the bpy.context is ST

User Perspective

useful for telling us what is going on Gl
in an ‘area’ of our screen.
e Usually these are ‘read-only’ types

of things we can get
o Butit's very useful for instance if we
want to store a variable to our currently
selected object
® e.g.

o myObject = bpy.context.active_object

45

Acquiring the Geometry of our current object

e As we know, 3D objects are often
defined by:

o vertices, edges, and polygons (3 or
more edges)

®
o verts = myObject.data.vertices
o edges = myObject.data.edges
o faces = myObject.data.polygons

e Note: When we access an objects
‘data’, sometimes you’ll hear this
referred to as a data-block

2+ W ObjectMode v
e

User Perspective
(10) Collection | Suzanne

[-]v View Console

View Select Add Object 1, Global v (Pv D) i (e

>>> p}ini(myobjeci)
Of struct Object("Suzanne

>>> print(myObject.name)

46

active object verts = active obj.data.vertices

Computing the Bounds (1/3)

xValues

yValues
, : zValues -
e |'ve opted for as simple of
an algorithm as possible # Only compute b
Vv active_objectgverts:

xValues.append(v.co]
yValues.append(v.co|
zValues.append(v.co|

N =~ O -

minx min(xValues)

maxx max (xValues)
miny min(yValues)
maxy = max(yValues)
minz = min(zValues)

maxz max(zValues)

active object verts = active obj.data.vertices

o > e c Th o8 | 1S

xValues =

yValues -
e First grab the vertices £Xalies
o We’re going to want our own # Only compute boundint
‘List’ of vertices to work with _, ,.w,;;‘_;,m.,_
(and later generate some Vv active object verts:
geometry) # 1T v.select frue:
Note: | have commented out xValues.append(v.co[0]

yValues.append(v.co|
zValues.append(v.co|

to only compute bounding
box on selected vertices (line

N

87) -- try to play around with
that on your own time ;)

m Hint: May or may not minx min(xValues)

need to be in edit maxx = max(xValues)
mode. miny = min(yValues)
maxy = max(yValues)
minz = min(zValues)

maxz max(zValues)

active object verts

xVéi
AL LE
zVal

ues
ues
ues

mp

ar
f
!

DI

active obj.data.vertices

Vv active_object_verts:

xValues
yValues
zValues

.append(v.col
.append(v.co|
.append(v.co|

N =~ O .

minx

maxx
miny
maxy
minz
maxz

min

max |
min
(yValues)
min
max |

max

(xValues)

xValues)
yValues)

zValues)
zValues)

Creating a ‘Bounding Box’ (1/2)

e Now that we have the boundaries, we need to create a ‘box’ object

e |n order to generate a ‘mesh’ we have a few choices
o Some folks with graphics programming, may go ahead and want to create the ‘indexed cube’
and calculate the vertices, edges, and polygons (with the correct winding order)

https://alg.manifoldapp.org/api/proxy/ingestion_sources/85b8a903-6d37-4a26-b376-552ce0ef528b

50

https://alg.manifoldapp.org/api/proxy/ingestion_sources/85b8a903-6d37-4a26-b376-552ce0ef528b

o Asecond choice, is to simply generate a cube from blender, and reposition the corner vertices
m This does the hard work of preserving the connectivity for us.

bpy.ops.mesh.primitive cube add(enter editmode=False, align='WORLD', location=(0, 0, 0),
cube temp = bpy.context.active object

1 1 1re o
4Ll C

cube verts = cube temp.data.vertices
cube edges = cube temp.data.edges
cube faces = cube temp.data.polygons

51

bmesh

Blender Mesh Format

52

BMesh Module (bmesh)

This module provides access to blenders bmesh data structures.

BMesh (bmesh)

Introduction

This API gives access the Blender’s internal mesh editing API, featuring

() The B MeSh API al IOWS US to WO rk With the geometry connectivity data and access to editing operations such as split,

separate, collapse and dissolve. The features exposed closely follow the C API,

Inte rnal mesh ed Itl ng tools In blender giving Python access to the functions used by Blender's own mesh editing
tools.
o i.e. Basically any operations that you'd like
For an overview of BMesh data types and how they reference each other see:

e Probably most important for us is to just be BMesh Design Document.

able to gr‘ab data and put it into a meSh. # This example assumes we have a mesh object selected
import bpy

e There might come a time where you want to swere smesn

Get the active mesh >>> type(myObject.data)

perform more interesting Opel’ations me = bpy.context.object.data <class 'bpy types.Mesh'>
o (Note: When you run a script, you lock the mesh by, .coecencacion
operating on it, modify the mesh, and returns CoNtrol o ron) & o oe o rren & oo
to a user)

Modify the BMesh, can do anything here...
for v in bm.verts:
v.co.x += 1.0

Finish up, write the bmesh back to the mesh

bm. to_mesh(me)

bm.free() # free and prevent further access 53
https://docs.blender.org/api/current/bmesh.htmi#module-bmesh

https://docs.blender.org/api/current/bmesh.html#module-bmesh

= cube temp.data.vertices

cube temp.data.edges

lterating through data _faces = cube_tenp.data.polygons
, . cube temp verts []
e |It's useful for us to store the vertices, edges, V in cube_verts:
and faces in our own data structure to entry = [v.co[0],v.co[1],v.co[2]]

generate ‘a new mesh’ for our bounding box CUide. Lewp Werts.appencientryl

o The code below demonstrates how to ‘iterate’

through each of vertices, edges, and ‘polygons’ (i.e. cube temp edges -
faces) segment cube edges:
m Please be careful as to not modify the original entry |
data -- observe we are copying into our own pair segment.vertices:

list entry.append(pair)

m Modifying a data structure while iterating could Cube_temp_edges.append(entry)

be unsafe
e (‘search iterator invalidation’)

e Note: These blocks of code could be

11 OuUg
(figure out the indices

cube_temb_faces :

condensed further -- optimize at your level of ig’t"rsowg‘_’“ CUbe rdces i tems it
Python! vertInPolygon polygon.vertices:

o List comprehension, unzip list, etc. entry.append(vertInPolygon)
cube temp faces.append(entry)

Building Our Bounding Box

Here is the little hack where |

just need to reassign the
vertices of our ‘cube’

O

There
follow
|

’s a pattern here you can

(Hint: It happens look like
a truth table if you have
taken a logic or discrete
math subject)

bounding verts

bounding verts[0]
bounding verts[1]
bounding verts[2]
bounding verts[3]
bounding verts[4]
bounding verts|[5]
verts|[6]

bounding

bounding verts|[7

cube temp verts.copy()

55

Building Our Mesh

e Finally it's time to create our mesh
o Welll give it a unique name
o Populate the mesh from our collection of
vertices
[Importantly using the
bounding_verts
m The edge and face relationship
remains the same as a standard
cube

e Atline 164 and 166, observe that we

need to do two steps
o One to create the object
o Asecond step to add it to our scene
(‘Collection’ being the default scene)

e And finally, as an added touch at line

169 -- set the display_type to ‘WIRFE’

o (Which I learned by clicking around the
user interface)

boﬁﬁdiﬁé namé‘u boundlng "+active obj.name

boundlng mesh bpy data meshes new(bounding_name

boundlng mesh from pydata boandlng verts cube temp edges cube temp faces
boundlng obJect bpy data ob]ects’new boundlng name, boundlng mesh)

bpy data collectlons Collectlon ob]ects llnk boundlng object)

bpy.data.objects[bounding name].display type '"WIRE'

56

One Final Step

e In order to orient our bounding
box to the object, we again

have two strategies:

o Set the transform (scale, rotation,
and location) equivalent to the
object

o or

o Make the bounding object a child
of the selected object

m Thus inheriting the
transformations

e Eitheris fine -- the point is to

play around and be creative
o (Though making the child may be
easier to maintain and organize in
your scene!)

bounding object.parent

active obj

57

The Final Result!

e Creating a Bounding Box programmatically in Python

Your Script as an Add-On

Making our Script available as a Plugin to the World

e Running our script through the
Text Editor is perfectly fine

o However -- it becomes much easier to
share and use if we create an ‘add-on’

o Some add-ons are official, and others
are from the community (like you) that
we can choose from.

-

Blender Preferences

Interface Official Community A Install... £ Refresh

Themes Enabled Add-... All v /O

Viewport
Lights
Editing
Animation

Add-ons

Input

Navigation

60

Step 1: Prep

e The first thing we need is to prep

our script as an add-on
o The bl_info dictionary populates our
plugin with meta-data importantly with:
m Aname
m Category
o register() and unregister() are
function calls that take place when we
first add our plugin

What is an Add-on?

An add-on is simply a Python module with some additional requirements so Blender can display it
in a list with useful information.

To give an example, here is the simplest possible add-on:

bl_info = {
"name": "My Test Add-on",
"blender": (2, 80, 0),
"category": "Object",

}

def register():
print("Hello World")

def unregister():
print("Goodbye World")

https://docs.blender.org/manual/en/latest/advanced/scripting/addon_tutorial.html

61

https://docs.blender.org/manual/en/latest/advanced/scripting/addon_tutorial.html

Step 2: Make our command useable

e \We can make things slightly more interesting by adding our command to
the search (F3) command menu.

def menu_func(self, context):
self.layout.operator(ObjectMoveX.bl_idname)

def register():
bpy.utils.register_class(ObjectMoveX)
bpy.types.VIEW3D_MT_object.append(menu_func) # Adds the new operator to an existing menu.

def unregister():
bpy.utils.unregister_class(ObjectMoveX)

https://docs.blender.org/manual/en/latest/advanced/scripting/addon_tutorial.html

62

https://docs.blender.org/manual/en/latest/advanced/scripting/addon_tutorial.html

Step 3: Prepare ‘execute’ function

bl_info

e Wrap the work that we previously “nane" "Conpute Bounding Box BCon”

"blender": (3, 00, 0),
did into a class cereseny et
o This inherits from the ‘Operator’ type, in

that we then use our function as an by
€ ’ time #
operator
@) Then (next S“de) ObjectComputeBoundingBox (bpy.types.Operator):

"""Simple example showing you how to compute bounding box"""
bl_idname "object.computebunding box" # U €
bl_label = "Compute Bounding Box BCon"

bl_options { '"REGISTER', 'UNDO'}

execute(self, context

start_time = time.time
print("Starting Bounding Box Script"

active obj bpy.context.active object

63
https://docs.blender.org/manual/en/latest/advanced/scripting/addon_tutorial.html

https://docs.blender.org/manual/en/latest/advanced/scripting/addon_tutorial.html

Step 4: Try it out!

e Testit out-- and we’re done!

o Of course -- for another tutorial we can
create a menubar icon and further
continue our adventure...maybe next
year?

https://docs.blender.org/manual/en/latest/advanced/scripting/addon_tutorial.html

64

https://docs.blender.org/manual/en/latest/advanced/scripting/addon_tutorial.html

Wrapping Up

Summary

e Today we took an introductory look
at Blender 3D’s Python API

o We briefly looked at some of the main
modules
o We solved (or resolved) a non-trivial
problem in creating a bounding box
m We showed how to create an
add-on from this script.

66

Homework: New Feature Ideas of our Script

e \What happens if we add new geometry to our mesh?

o We need a way to poll and recompute the bounding box
o Investigate handler callbacks here: hitps://docs.blender.org/api/current/bpy.app.handlers.html

e How about adding an option to creating a bounding sphere?

o Just need to compute the maximum of the bounds on each axis to use as a diameter.
e Abstraction

o As an exercise -- think about which chunks of code could go into their own functions

o Perhaps we could encapsulate this into a classes or files

m As our scripts get larger, it's important to get a little bit organized.

e Resiliency

o Add some try/except blocks where necessary to make the code a bit more resilient

67

https://docs.blender.org/api/current/bpy.app.handlers.html

Other Essential Skills - Version Control for Text-based Files

e If you're diving into more
programming, version control of

your scripts becomes important
o I'd recommend using ‘git’ and ‘github’ (to
host the git repository) as a general skill
m Git Beqginner Masterclass (Free)
o If folks are already using a tool like
‘perforce’ to manage art assets, that will
also work fine too.

68

https://www.youtube.com/watch?v=HlYJpuwaXiE

Further resources and training materials

e Best Practices

o https://docs.blender.org/api/current/info_best_practice.html
o Goto resource for questions on code structure, performance recommendations, etc.

69

https://docs.blender.org/api/current/info_best_practice.html

Random Useful Ideas (If Time) (1/2)

e Check the blender version release

O

import bpy
bpy.app.version
m or
major,minor,micro = bpy.app.version
print(major)

(@)

(@)

@]

70

import bpy

def my_handler(scene):
if bpy.context.active_object.name == "Cube":

print("Cube changed", scene.frame_current)

bpy.app.handlers.depsgraph_update_post.append(my_handler)

71

Thank you Blender Con 2023!

Getting Started with
Scripting in Python

Social: @MichaelShah

Web: mshah.io

Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Thank you!

Extra

